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Abstract
Given two rational univariate polynomials, the Wasserstein distance of their associated mea-
sures is an algebraic number. We determine the algebraic degree of the squared Wasserstein
distance, serving as a measure of algebraic complexity of the corresponding optimization
problem. The computation relies on Galois theory and on the combinatorial structure of a
specific subpolytope of the Birkhoff polytope, invariant under a transformation induced by
complex conjugation. Proofs and computations also draw on notions from graph theory and
elimination ideals.

Keywords Wasserstein distance · algebraic degree · conjugation invariant Birkhoff
polytope · minimal polynomial · bipartite graphs · Galois theory
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1 Introduction

Given two univariate polynomials p, q ∈ Q[z] of degree d with simple roots, consider the
optimization problem

minimize
1

d

∑

1≤i≤d

‖αi − βσ(i)‖2 over σ ∈ Sym(d), (1)

where α1, . . . , αd and β1, . . . , βd are the roots of p and q respectively. Here ‖ · ‖ denotes the
Euclidean normandSym(d) is the set of permutations of d elements. The optimal value of (1),
denoted byW2

2, is the square of the Wasserstein distance of the measures associated to p and
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q . It follows from the definition that this minimum is an algebraic number, namely it is a root
of a univariate polynomial with rational coefficients. There exists a unique such polynomial
that is monic and of minimal degree; we denote the minimal degree byWDdegree(p, q). We
will refer to WDdegree(p, q) as theWasserstein distance degree of p and q . The goal of this
paper is to provide a formula forWDdegree(p, q), which is an index of the complexity of the
optimization problem (1), relevant in optimal transport. In the context of computer algebra in
fact we cannot solve exactly such a minimization, but we can encode it in a polynomial that
on the other hand can be computed exactly. Moreover, the exact computation might contain
more information about the numeric solution to the problem or its geometry. We propose
this algebraic approach to an intrinsically metric problem in the spirit of metric algebraic
geometry [4], confident that the interplay between the different points of view will bring new
insights for both communities.

The Wasserstein distance is a notion of distance between probability distributions on
a metric space. It can be thought of as the cost of turning one distribution into another,
and it is therefore intimately connected to optimal transport problems [23, Chapter 7]. The
optimization problem (1) is a special case of the assignment problem [20, Chapter 17], a
well-studied problem in combinatorial optimization.

Adopting a broader perspective, we can interpret (1) as a polynomial optimization prob-
lem where we minimize a polynomial with rational coefficients in 2d variables under 2d
constraints:

minimize f (x1, . . . , xd , y1, . . . , yd) subject to fk(x1, . . . , xd) = 0, gk(y1, . . . , yd) = 0,

where f (x1, . . . , xd , y1, . . . , yd) = 1
d

∑
i ‖xi − yi‖2 and fk, gk are Vieta’s formulae [22] for

k = 1, . . . , d , namely the equations of degree k that relate the roots of p, q to their coefficients.
It is of general interest to compute the algebraic degree of the optimal solution of a polynomial
optimization problem. Indeed, this degree encodes the algebraic complexity required to write
the optimum exactly in terms of the input. This concept has been investigated in the literature
in several contexts, e.g., semidefinite programming [7, 8, 16, 18]. Alternatively, when the
objective function is the squared Euclidean distance [6, 17], the algebraic degree of the
minimum (ED degree) measures the complexity of optimizing the Euclidean distance over
an algebraic variety, problem arising inmany applications. Of similar fashion is themaximum
likelihood degree, central in algebraic statistics [9, 10, 21].

Algebraic techniques allowus to compute the algebraic degree of the optimization problem
when the constraints are generic, see [15]. However, in many relevant scenarios (e.g., those
mentioned above), the imposed conditions are not generic enough. Then, [15, Theorem 2.2]
provides an upper bound for the algebraic degree. Our case fits in this family of nongeneric
problems, and we can conclude that WDdegree(p, q) ≤ (d!)2 for any p, q as in (1). As
anticipated, this bound is not tight, and we will refine it in what follows.

We begin with the setup in Sect. 2 where we define theWasserstein distance for measures,
and then interpret it in terms of associated polynomials, along the lines of [1]. In Sect. 3,
we introduce a transformation of the Birkhoff polytope induced by complex conjugation and
study its invariant subpolytope (Definition 3.1). We give a graph interpretation of its vertices
and characterize them in Theorem 3.7 and Proposition 3.11. Exploiting the combinatorial
information together with standard Galois theory, we obtain the formulae for the minimal
polynomial , or in degenerate cases for amultiple of it, and the algebraic degree of the squared
Wasserstein distance in Theorems 4.5 and 4.6. In Sect. 4.2, we interpret the computation of
the minimal polynomial via an elimination of ideal and describe the algorithm to compute
it. The code is available at https://mathrepo.mis.mpg.de/WassersteinDegree/.

We conclude the introduction with an example.
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Example 1.1 Consider the univariate cubic polynomials p(z) = 2z3 + z2 − 3z − 7 and
q(z) = 3z3 − z2 − 5z + 4. They both have one real root, α1 and β1 respectively, and a pair
of complex conjugate roots, α2, α3 and β2, β3 respectively. Then,

W2
2(p, q) = min

σ∈Sym(3)

1

3

∑

1≤i≤3

‖αi − βσ(i)‖2

= ‖α1 − β2‖2 + ‖α2 − β1‖2 + ‖α3 − β3‖2 = 2.020013 . . .

is the squared Wasserstein distance of p, q . This real number is algebraic: indeed, it is a root
of the following univariate monic irreducible polynomial with rational coefficients:

z18 − 25
18 z

17 − 6611
432 z

16 + 9658735
314928 z

15 + 860802973
5038848 z14 − 656593649875

816293376 z13 + 129841846201105
1586874322944 z12

+ 28152774676858415
3570467226624 z11 − 46036000403242535

3570467226624 z10 − 64389115881803301815
1156831381426176 z9

+ 987135963331795614481
4627325525704704 z8 − 188523216802141986655495

749626735164162048 z7 + 570696146952180632862839
26986562465909833728 z6

+ 2978098003861411543837955
40479843698864750592 z5 + 674775812403532619558719717

364318593289782755328 z4

− 120675780215928578619735476735
39346408075296537575424 z3 − 1185279955326920964318656606075

354117672677668838178816 z2

+ 1848261661275845551117166614375
3187059054099019543609344 z + 18255232646137865373249774012390625

1835746015161035257118982144 .

(2)

Hence, the Wasserstein distance degree of p, q is 18. We will discuss in the rest of the paper
how to obtain this minimal polynomial.

2 Finitely supported probability measures

On ametric space, the distance between two probability measures can be quantified using the
notion ofWasserstein distance. In [1], it has been used to introduce a newmetric on the space
of hypersurfaces of degree d in CPn . We will recall the definition of Wasserstein distance
for finitely supported measures and relate theWasserstein distance of univariate polynomials
with an optimization problem on the Birkhoff polytope. For the general theory, we refer to
[23]. In this section, we consider univariate polynomials with coefficients inC. We associate
probability measures to finitely supported probability measures induced by polynomials in
the following way.

Definition 2.1 Let p ∈ C[z] be a polynomial of degree d . Its associated measure μ(p) is

μ(p) = 1

d

∑

p(x)=0

m(p, x)δx ,

where m(p, x) is the multiplicity of p at x ∈ C.

More concretely, if p(z) factors as
∏

1≤i≤d(z−αi ), thenμ(p) = 1
d

∑
1≤i≤d δαi . In particular,

if p has no multiple roots, then μ(p) is the uniform counting measure on the roots of p. We
will be mostly interested in the case where p has no multiple roots.

Definition 2.2 Let μ1, μ2 be finitely supported probability measures on C. A transport plan
from μ1 to μ2 is a probability measure λ on C × C such that π1∗λ = μ1 and π2∗λ = μ2,
where the pushforwards πi∗λ are measures on C defined via

π1∗(λ)[A] = λ[A × C], π2∗(λ)[B] = λ[C × B]
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for any A, B ⊆ C. We write �(μ1, μ2) for the set of transport plans between μ1 and μ2.
The cost of a transport plan is defined to be

cost(λ) =
∫

‖x − y‖2dλ(x, y).

The squared Wasserstein distance between μ1, μ2 is the minimal cost of a transport plan:

W2
2(μ1, μ2) = min

λ∈�(μ1,μ2)
cost(λ).

Remark 2.3 If μ1, μ2 are finitely supported probability measures, then every transport plan
from μ1 to μ2 will have support contained in suppμ1 × suppμ2. In particular, they will also
have finite support. In this setting we do not have to deal with most measure theoretic issues.
See for example [23, Chapter 7] for the general definition.

We continue Example 1.1 in order to familiarize with the definition.

Example 2.4 As in Example 1.1, consider the univariate polynomials p(z) = 2z3+z2−3z−7
and q(z) = 3z3−z2−5z+4 and denote by α1, α2, α3 and β1, β2, β3 their roots, respectively.
According to Definition 2.2, the squared Wasserstein distance of p and q is the minimum of∫ ‖x − y‖2dλ(x, y), where λ is any probability measure on C × C such that

λ[A × C] =
(
1

3
(δα1 + δα2 + δα3)

)
[A] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if αi , α j , αk /∈ A, {i, j, k} = {1, 2, 3}
1
3 if αi ∈ A, α j , αk /∈ A, {i, j, k} = {1, 2, 3}
2
3 if αi , α j ∈ A, αk /∈ A, {i, j, k} = {1, 2, 3}
1 if αi , α j , αk ∈ A, {i, j, k} = {1, 2, 3}

λ[C × B] =
(
1

3
(δβ1 + δβ2 + δβ3)

)
[B] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if βi , β j , βk /∈ B, {i, j, k} = {1, 2, 3}
1
3 if βi ∈ B, β j , βk /∈ B, {i, j, k} = {1, 2, 3}
2
3 if βi , β j ∈ B, βk /∈ B, {i, j, k} = {1, 2, 3}
1 if βi , β j , βk ∈ B, {i, j, k} = {1, 2, 3}

(3)

for any A, B ⊂ C.

Formeasures associated to polynomials, it will be convenient toworkwith doubly stochas-
tic matrices, namely those square matrices with nonnegative real entries, each of whose rows
and columns add up to 1. For d ∈ N, we let Bd denote the d-th Birkhoff polytope, i.e., the set
of all doubly stochastic matrices of size d × d . It is a classical result due to Birkhoff [3] and
von Neumann [24] that this set is a convex polytope, with vertices the permutation matrices
of size d×d . For more details on the Birkhoff polytope and its properties, we refer the reader
to [25].

The following result highlights the fact that in the context of measures associated to uni-
variate polynomials, each transport plan corresponds to a doubly stochasticmatrix. Therefore,
instead of working with probability measures onC×C, we can focus on Birkhoff polytopes.

Lemma 2.5 Let p, q ∈ C[z] be polynomials of degree d with rootsα1, . . . , αd andβ1, . . . , βd

respectively. Suppose that p and q have no multiple roots. Then the following is a bijection:

λ : Bd → �(μ(p), μ(q))

M 	→ λ(M):= 1

d

∑

1≤i, j≤d

Mi jδαi ,β j .
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Proof Since we assume p and q have no multiple roots, it follows that the map

M 	→ 1

d

∑

1≤i, j≤d

Mi jδαi ,β j

defines a bijection between Rd×d
≥0 and the set of finite measures supported on the points

{α1, . . . , αd} × {β1, . . . , βd}. For M ∈ Rd×d
≥0 and 1 ≤ i ≤ d , we have

π1∗(λ(M))[{αi }] = (λ(M))[{αi } × C] =
∑

1≤ j≤d

(λ(M))[{(αi , β j )}] = 1

d

∑

1≤ j≤d

Mi j .

From this we see that π1∗(λ(M)) = μ(p) if and only if all row sums of M are equal to 1.
Similarly π2∗(λ(M)) = μ(q) if and only if all column sums are equal to 1. So λ(M) is a
transport plan if and only if M ∈ Bd . ��

Remark 2.6 If p and q are allowed to have multiple roots, then �(μ(p), μ(q)) is given by a
transportation polytope (see [11] for an overview). However, the map defined in Lemma 2.5
is still a surjection if we list the roots with multiplicity.

We use Lemma 2.5 in our consideration of the Wasserstein distance for polynomials.
From now on, we consider univariate polynomials p, q ∈ C[z] with factorizations p(z) =∏

1≤i≤d(z − αi ), q(z) = ∏
1≤i≤d(z − βi ), without multiple roots. For M ∈ Bd , we write

cost(M, p, q) = cost(λ(M)) = 1

d

∑

1≤i, j≤d

Mi j‖αi − β j‖2. (4)

By these considerations and using the bijection in Lemma 2.5 we interpret the Wasserstein
distance between two polynomials as an optimization problem:

W2
2(p, q):=W2

2(μ(p), μ(q)) = min
M∈Bd

cost(M, p, q).

We highlight the role of the lemma in our running example.

Example 2.7 Assume the setup from Example 1.1 and Example 2.4. Instead of expressing the
cost function as an integral, we can turn it into a finite sum via Lemma 2.5. Indeed, a measure
λ on C × C that satisfies (3) must be supported on the product {α1, α2, α3} × {β1, β2, β3}.
Therefore, the integral in Example 2.4 becomes

1

3

∑

1≤i, j≤3

Mi, j‖αi − β j‖2,

where the coefficients Mi, j encode the mass of the measure λ at the point (αi , β j ). If the
Mi, j are interpreted as entries of a matrix M , the latter must have row sums and column
sums equal to 1 in order to satisfy the conditions in (3). Equivalently, M must be a doubly
stochastic matrix, hence a point of the third Birkhoff polytope B3, which is the convex hull
of the 3! = 6 permutation matrices of size 3 × 3. This gives rise to a polytope in R9 of
dimension 4. The affine hull of B3 is in fact cut out by the linear conditions that row sums
and column sums are equal to 1.
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3 Invariant Birkhoff polytope

We now restrict to polynomials with real coefficients and study the effects of complex con-
jugation, denoted as usual by z̄. If p, q ∈ R[z], then complex conjugation will induce an
involution on the transport plans form μ(p) to μ(q). We compute this involution for the
Birkhoff polytope under the identification of Lemma 2.5.

Assume p, q ∈ R[z]with rootsαi andβi as above.We denote byφ andψ the permutations
that swap complex conjugate pairs of roots of p and q respectively, namely,

αφ(i) = αi ,

βψ(i) = βi .
(5)

We will call Pφ, Pψ the permutation matrices associated to φ and ψ respectively. Then the
pair (φ, ψ) defines a map ι : Bd → Bd via

(ιM)i j = Mφ(i)ψ( j) = (PφMPψ)i j .

We can see that ι is a linear isometry of the Birkhoff polytope. In fact, every combinatorial
symmetry of Bd is of the form M 	→ PgMPh or M 	→ PgM
Ph for some permutations
g, h ∈ Sym(d), see [2]. In particular, ι defines an involution on the Birkhoff polytope. This
suggests the following definition.

Definition 3.1 Let p, q ∈ R[z] be polynomials of degree d with distinct roots and take
φ,ψ ∈ Sym(d) to be permutations that satisfy (5). Consider the operation ι = (φ, ψ).
The associated ι-invariant Birkhoff polytope, denoted Bι

d , is the set of all doubly stochastic
matrices that are invariant under ι.

Observe that the cost function does not change under ι, namely

cost(M, p, q) = cost(ιM, p, q) = cost

(
M + ιM

2
, p, q

)
.

Therefore, instead of solving an optimization problem over the Birkhoff polytope, we can
find the squared Wasserstein distance using the ι-invariant Birkhoff polytope:

W2
2(p, q) = 1

d
min
M∈Bι

d

cost(M, p, q).

The cost function remains linear for M ∈ Bι
d , hence the minimum is attained at a vertex of

Bι
d . The ι-invariant Birkhoff polytope can reduce the complexity of the optimization problem,

since it is potentially lower dimensional. We give the formula for the dimension of Bι
d in

terms of the number of real and complex roots of the polynomials p, q .
For completeness, we compute the dimension of the ι-invariant Birkhoff polytopes. Let

us introduce some notation. We denote the number of real roots of a polynomial p ∈ R[z]
by pR, and the number of pairs of its complex conjugate roots by pC.

Lemma 3.2 Suppose ι = (φ, ψ) is the involution associated with p, q. Then, the dimension
of the ι-invariant Birkhoff polytope Bι

d is

dim Bι
d = (pR + pC)(qR + qC) − (pR + pC + qR + qC − 1) + pCqC.

Proof By definition, the affine span of Bι
d is

V =
{
M ∈ Rd×d | Mi j = Mφ(i)ψ( j),∀i, j ∈ [d],

∑

1≤i≤d

Mi j = 1,
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∀ j ∈ [d],
d∑

1≤ j≤d

Mi j = 1,∀i ∈ [d]
}
,

where [d] = {1, . . . , d}. The first family of conditions implies that there are at most

(pR + 2pC)(qR + 2qC) − pCqR − pRqC − pCqC = (pR + pC)(qR + qC) + pCqC

free parameters for the points in V , since φ and ψ switch complex conjugate pairs. The
second and third type of conditions in the definition of V impose that each column and each
row of M sums to 1. Since

∑
1≤ j≤d Mi j =∑

1≤ j≤d Mφ(i) j for i ∈ [d], and ∑
1≤i≤d Mi j =∑

1≤i≤d Miψ( j) for j ∈ [d], there are exactlym = pR+pC+qR+qC distinct linear equations
among row-sums and column-sums. However, only pR + pC + qR + qC − 1 are linearly
independent. Indeed, consider the distinct relations �i1 , . . . , �i pR+pC

, � j1 , . . . , � jqR+qC
, where

the i indices correspond to row-sums and the j indices to column-sums. The k-th summand
in � jqR+qC

can be expressed in terms of �ik , for all k. On the other hand, the equation
∑

1≤k≤pR+pC

ηk�ik +
∑

1≤k≤qR+qC−1

μk� jk = 0

must be trivial. To see this, notice that η = 0 for every k, since each of them is the only
coefficient of Mik , jqR+qC

in the sum. Then we are left only with column-sums, and these
are trivially independent since each of them involves some term that does not appear in the
others. So μk = 0 too, and we conclude that

dim Bι
d = dim V = (pR + pC)(qR + qC) + pCqC − (pR + pC + qR + qC − 1).

��
In the following subsections, we will focus on the vertices of this polytope. In order to

get a better understanding, we will introduce a graph associated with the vertices of Bι
d . To

conclude this part, we construct some examples of ι-invariant Birkhoff polytopes, which we
will review later using the graph interpretation. The code used to compute these examples
is available at https://mathrepo.mis.mpg.de/WassersteinDegree/Birkhoff.

Example 3.3 Let d = 2, then p, q are quadratic polynomials with real coefficients. The
Birkhoff polytope B2 is a segment in R4. There are three possible cases for the structure of
the roots of p, q: both polynomials have both roots real; one has both roots real and one has
both roots complex; both polynomials have both roots complex. In the first case, we have
identity matrices Pφ = Pψ = 12, hence Bι

2 = B2. In the second case, we assume that p
has complex roots and q real roots, then Pφ = (

0 1
1 0

)
, Pψ = 12, and the polytope becomes a

point: Bι
2 = { 1

2

(
1 1
1 1

)}
. Finally, in the case where the roots of both polynomials are complex,

Pφ = Pψ = (
0 1
1 0

)
hence ι fixes the two vertices of the Birkhoff polytope, so Bι

2 = B2.

Example 3.4 Let d = 3, then p, q are cubic polynomials with real coefficients. The polytope
B3 has dimension 4 in R9. There are again three cases of roots configurations for p, q:

1. p, q have all roots real, then Pφ = Pψ = 13, so Bι
3 = B3.

2. q has all roots real and p has exactly one real root. We will assume that the real root of

p is α1. Then Pφ =
(
1 0 0
0 0 1
0 1 0

)
, Pψ = 13. The 6 vertices of the Birkhoff polytope collapse

to form a triangle

Bι
3 = conv

{(
1 0 0
0 1

2
1
2

0 1
2

1
2

)
,

(
0 1

2
1
2

1 0 0
0 1

2
1
2

)
,

(
0 1

2
1
2

0 1
2

1
2

1 0 0

)}
.

123
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Table 1 Dimensions of the
invariant Birkhoff polytopes for
d = 4

(pR, pC) (qR, qC) dim Bι
d | vertices(Bι

d )|
(4,0) (4,0) 9 24

(4,0) (2,1) 6 12

(4,0) (0,2) 3 6

(2,1) (2,1) 5 13

(2,1) (0,2) 4 12

(0,2) (0,2) 5 8

3. p, q both have exactly one real root. We will assume that these are α1, β1. Then Pφ =
Pψ =

(
1 0 0
0 0 1
0 1 0

)
. The associated invariant Birkhoff polytope is now the square

Bι
3 = conv

{
13,

(
1 0 0
0 0 1
0 1 0

)
,

(
0 1

2
1
2

1
2

1
2 0

1
2 0 1

2

)
,

(
0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

)}
.

Example 3.5 Let d = 4, then p, q are quartic polynomials with real coefficients. TheBirkhoff
polytope B4 has dimension9 inR16.Assume that p has only real roots, andq has only complex
roots. Then, as predicted in Lemma 3.2, the invariant Birkhoff polytope is a 3-dimensional
octahedron. This and all the other cases are listed in Table 1.

3.1 Graph interpretation

The aim of this subsection is to introduce a graph interpretation of the vertices of Bι
d . This

interpretation will be used to realize all the vertices of Bι
d as minimizer of our optimiza-

tion problem (1) and we shall see that the graph automorphisms are closely related to the
Wasserstein distance degree.

Recall that the ι-invariant Birkhoff polytope Bι
d is the image of the standard Birkhoff

polytope via the map v 	→ v+ι(v)
2 . Any vertex of the ι-invariant Birkhoff polytope Bι

d is
necessarily the image of a vertex of the Birkhoff polytope. Otherwise, by Krein–Milman
theorem [12], it would be possible to express it as the convex combination of other points in
Bι
d . Since the vertices of the classical Birkhoff polytope are permutation matrices, a vertex

M ∈ Rd×d of Bι
d satisfies Mi j ∈ {

0, 1
2 , 1

}
. Hence, the matrix 2M has integer entries.

We associate a bipartite graph � with d nodes on the left side (L) and d nodes on the right
side (R), such that 2M is its adjacency matrix. Namely, the vertices of the graph, denoted
V (�) = [d] × {L, R}, satisfy the property that (i, L) and ( j, R) are connected by 2Mi j

edges. Such an edge will be denoted by (i, j), where the first entry indicates a vertex (i, L)

and the second entry indicates a vertex ( j, R). Since M is a doubly stochastic matrix, every
vertex in � has degree 2. � is then a disjoint union of cycles, and because it is bipartite, each
cycle has even length.

Example 3.6 We continue here our running example, and refer to Example 1.1 and Fig. 1 for
the setting. From the figure, we construct the permutation matrix P associated to p, q , with
Pi, j = 1 exactly when αi and β j are connected. Then,

M = P + ι(P)

2
= 1

2

⎛

⎝

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ +
⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠

⎞

⎠ .
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Fig. 1 The roots of p (blue dots)
and the roots of q (red diamonds),
from Example 1.1. The segments
joining them represent a pairing
that realizes the minimum for the
Wasserstein distance of p, q

Fig. 2 Graph � associated to the
roots configuration in Example
3.6. The setting is also displayed
in Fig. 1

We associate to p, q a graph as follows. Consider a bipartite graph � with vertices that
represent the roots of p on one side and the roots of q on the other side, and adjeciency
matrix 2M . In our specific case, we obtain the graph � from Fig. 2. The bipartite graph has
6 edges which form a unique cycle.
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The invariance of M under ι gives a graph automorphism that we will by abuse of notation
also call ι. Explicitly, ι(i, L) = (φ(i), L) and ι( j, R) = (ψ( j), R). Note that ι is also an
involution and it acts independently on both sides of the bipartite graph �.

Let us introduce some types of cycles in �, governed by the involution:

1. 2-cycles between fixed points of ι;
2. pairs of 2-cycles that are interchanged by ι;
3. cycles of length 2(2k + 1), k > 0, including exactly one fixed point of ι on each side;
4. cycles of length 4k, k > 0, including exactly two fixed points of ι on one side and none

on the other.

The following result states that these are the only possible disjoint cycles in our graphs.

Theorem 3.7 Let M be a vertex of Bι
d and � be the associated graph. Then, the disjoint

cycles in � are of type 1–4. Conversely, let � be a bipartite graph with d vertices on each
side, such that all its vertices have degree 2. If all the disjoint cycles of � are of type 1–4,
then the graph corresponds to a vertex M ∈ Bι

d .

Proof Suppose that M is a vertex of Bι
d corresponding to the graph �. Since M is the image

of a permutation matrix via · + ι(·)
2 , the entry of M corresponding to a pair of fixed points of ι

is either 0 or 1. Hence, if there is an edge in � between two fixed points of ι, then there must
be two such edges. The latter case describes cycles C in � of type 1.

If a cycleC contains no fixed point of ι, thenC must have length 2. Assume for contradic-
tion that C has length 2k > 2. We label its edges in cyclic order by e1, . . . , e2k . Recall that a
perfectmatching of a graph is a subsetM of edges such that every vertex is adjacent to exactly
one edge inM. The edge subsets {e1, e3, . . . , e2k−1}, {e2, e4, . . . , e2k} (and those for ι(C) if
C is not set-wise fixed) into two distinct ι-invariant perfect matchings M1,M2. We define
a matrix M1 with M1(i, j) = M(i, j) if (i, j) /∈ C , M1(i, j) = 2M(i, j) if (i, j) ∈ M1,
and M1(i, j) = 0 if (i, j) ∈ M2, similarly M2 for the perfect matching M2. The matrices
M1, M2 are in Bι

d since the perfect matchings are ι-invariant. Hence, 2M = M1 + M2, con-
tradicting the vertex assumption. Such a cycle of length 2 must therefore be (one cycle of the
pair) of type 2.

Next, suppose that C is a cycle of length at least 4. Then, it must contain a fixed point
of ι and hence C is set-wise fixed by ι. Since ι is an involution on C , its action on C
can be identified with an involution in the appropriate dihedral group, namely the graph
automorphisms of C . Using the classification of such involutions, we get that ι corresponds
to either a reflection, and therefore C contains exactly 2 fixed points, or to the identity, hence
all the points of C are fixed. We already observed that between two fixed points there cannot
be simple edges, so the second option leads to a contradiction. Hence, C must have exactly
2 fixed points and they can either lie on the same side (cycle of type 4) or one on each side
(cycle of type 3).

Conversely, letM be thematrix corresponding to the bipartite graph� with cycles of types
1–4. Then, M is a doubly stochastic matrix and it is invariant under ι so M ∈ Bι

d . We prove
that M is a vertex. Assume that M = N+L

2 for some N , L ∈ Bι
d . Note that Ni j = Li j = 0

whenever Mi j = 0, and Ni j = Li j = 1 whenever Mi j = 1. This is the case for (i, j) with
the edge between (i, L), ( j, R) in a cycle of type 1 or 2. Let C in � be a cycle of type 3 or 4.
Let (i1, j1), (i2, j2), . . . , (i�, j�) be the indices of entries of M corresponding to edges in C .
Without loss of generality, assume i1 = i2 = φ(i1) and j1 = ψ( j2). The only two positions
in the i1 row filled with nonzero entries in N or L are (i1, j1) and (i1, j2). Let Li1, j1 = ε,
then Li1, j2 = 1 − ε. Since L is invariant under ι, we must have ε = 1 − ε = 1

2 . Similarly,
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Ni1, j1 = Ni1, j2 = 1
2 . Since the row and column sums of M, N , L are 1 and Ni j = Li j = 0

whenever Mi j = 0, we have Nik , jk = Lik , jk = Mik , jk = 1
2 for all k = 1, . . . , �. Hence,

L = N = M and M is a vertex. ��
We are interested in the cardinality of the group automorphisms of the graph � that

commute with ι and preserve both sides. Such number relates to the algebraic degree of the
Wasserstein distance, as it will be explained in Sect. 4. The formula for the cardinality relies
on the number of cycles of each type. We denote the number of cycles of type 1 and of pairs
of cycles of type 2 by c1 and c2 respectively; the number of cycles in the third class with
length 2(2k + 1) is c3,k and the number of cycles in the fourth class with length 4k is c4,k,L
or c4,k,R , depending on the side of the fixed points.

Corollary 3.8 Let � be the bipartite graph corresponding to a vertex M in Bι
d and let S be

the set of disjoint cycles (or type 2 cycle pairs) in �. The group of automorphisms Autι(�)

of � that commute with ι and preserve both sides has cardinality

|Autι(�)| =
∏

C∈S
|Autι(C)|c1! c2!

∏

k

c3,k ! c4,k,L ! c4,k,R !

= 2c2+
∑

k (c3,k+2c4,k,L+2c4,k,R)c1! c2!
∏

k

(c3,k ! c4,k,L ! c4,k,R !).

Proof The automorphisms in Autι(�) respect the classification of disjoint cycles in �. We
can freely permute inside these classifications, hence obtain the factorial terms in the formula.
We are left to compute the automorphisms that commute with ι inside each disjoint cycle of
the corresponding type:

1. trivial symmetry
2. two automorphisms: ι and the trivial symmetry.
3. two automorphisms: ι and the trivial symmetry.
4. Kleinean group of symmetry, namely we are allowed to swap the two fixed points and

also act by ι.

��
Example 3.9 Let d = 3 and assume that p, q both have exactly 1 real root. Then, from case
3 in Example 3.4 we know that Bι

3 is a square. Its representation in terms of the associated
graphs is shown in Figure 3. The graph � corresponding to either of the bottom vertices
consists of one cycle of type 3 with length 6. The graph automorphisms Autι(�) are just
the identity and ι itself. On the other hand, the graph � corresponding to either of the top
vertices in Figure 3 consists of one cycle of type 1 and one pair of cycles of type 2. The graph
automorphisms Autι(�) also consist of the identity and ι itself.

3.2 Realization of the vertices

Any vertex of the ι-invariant Birkhoff polytope can be a minimizer for the cost funciton
cost(M, p, q) = 1

d

∑
1≤i, j≤d Mi j‖αi − β j‖2 for (p, q) in some non-empty open set of

monic polynomials without multiple roots. Note that we always consider the roots of the
polynomials p, q as ordered. The choice of a specific order does not alter the results, but an
order must be fixed. This is implicitly assumed also for the open sets of monic polynomials,
since the ordering of the roots of p (resp. q) induces a coherent ordering of the roots of
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Fig. 3 The invariant square Bι
3

from Example 3.9. Its vertices
correspond to bipartite graphs �.
The purple squares represent real
roots, the green triangles
represent complex roots. The
involution ι exchanges pairs of
green triangles

Fig. 4 Disjoint cycles in � as subgraphs of the Eisenstein lattice. From left to right, we have disjoint cycles
of types 1, 2 (pair), 4, 4, 3, 4

polynomials in a sufficiently small neighborhood of p (resp. q). In this open neighborhood
the involutions φ,ψ induced by complex conjugation remain the same.

From now on, we work under the assumptions that p, q ∈ R[z] factorize as p(z) =∏
1≤i≤d(z − αi ), q(z) = ∏

1≤ j≤d(z − β j ), and that the involutions φ,ψ of Sym(d) satisfy

αi = αφ(i), βi = βψ(i). We define the following set.

Definition 3.10 We define UM
(φ,ψ) to be the set of univariate polynomials p, q ∈ R[z] for

which M is the unique minimizer for cost(M, p, q) in Bι
d .

The uniqueness requirement in the definition ofUM
(φ,ψ) implies that M is a vertex of Bι

d . The
following result holds.

Proposition 3.11 For every vertex M ∈ Bι
d , the set U

M
(φ,ψ) is open and non-empty.

Proof The roots of a polynomial vary continuously as its coefficients vary. So, if M is the
unique minimizer for the cost function of two polynomials p, q with roots ordered cor-
responding to the involution φ,ψ , then there is an open set of polynomial pairs around
(p, q) such that any polynomial in the pair has distinct roots (ordered to satisfy the involu-
tions φ,ψ), and M is the unique minimizer of the cost function for all polynomial pairs in
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the open set. The unique minimizer requirement is an open condition, since it means that
cost(M, p, q) < cost(M ′, p, q) for any other vertex M ′ ∈ Bι

d .
We are left to construct the roots of a pair of polynomials of degree d such that M is the

uniqueminimizer for the pair, to prove thatUM
(φ,ψ) is non-empty. Let� be the graph associated

to M . Recall that � consists of disjoint cycles of four different types with cardinalities

c1, c2, c3,k, c4,k,L , c4,k,R . Denote the cycles by C1, . . . ,C�. Let ω = e
π i
3 ; we will do our

construction on the Eisenstein lattice Z[1, ω]. The idea is to repeat our construction for each
disjoint cycle (or pairs of disjoint cycles, if they are of type 2) and make sure that distinct
disjoint cycles are far away from each other.

• Ck is of type 1: assign the value 2dk and 2dk+1 to the corresponding real roots of p and
q respectively.

• Ck is of type 2: assign the values 2dk+ω, 2dk+ω to the pair of roots of p, and 2dk+ω+1,
2dk+ω+1 to the pair of roots of q . In this way, the vertex in � corresponding to 2dk+ω

connects to the one of 2dk+ω+1, and analogously the vertex in � corresponding to
2dk+ω connects to the one of 2dk+ω+1.

• Ck is of type 3: assume its length is 2(2 j+1). Assign the values 2dk, 2dk+ω, 2dk+ω+1,
. . . , 2dk+ω+2 j−1, 2dk+2 j , 2dk+ω+2 j−1, . . . , 2dk+ω to the roots of p, q alternated.

• Ck is of type 4: assume its length is 4 j and that the fixed points are on the left side. Assign
the values 2dk, 2dk+ω, 2dk+ω+1, . . ., 2dk+ω+2 j−2, 2dk+2 j−1, 2dk+ω+2 j−2,
. . . , 2dk+ω to the roots of p, q alternated.

See Fig. 4 for an illustration.
By the above construction, for any pair of (i, j) such thatMi, j �= 0,wehave‖αi−β j‖ = 1.

Any two distinct lattice points in the Eisenstein lattice have distance at least 1, so M is a
minimizer for the cost function of p, q . Suppose there exists another vertex N ∈ Bι

d with
cost(M) = cost(N ) and denote the graph corresponding to N by �′. Then, ‖αi − β j‖ = 1
whenever Ni j �= 0. Since any two lattice points in disjoint cycles (or pairs, for type 2) have
at least distance d , the disjoint cycles of �′ have the same vertices of the disjoint cycles of
�. Inside each disjoint cycle (or pairs, for type 2), the only way to achieve ‖αi − β j‖ = 1
whenever Ni j �= 0 is to assign the roots to p, q exactly as for M . Hence, M = N and M is
the unique minimizer for the cost function of p, q . ��
Remark 3.12 Note that the set UM

(φ,ψ) is also semialgebraic, since it is a projection of an
appropriate semialgebraic sets arising from the conditions that the pairs of factorized poly-
nomials have a coherent enumeration of their roots, and from M being the unique minimizer.
More explicitly, these conditions are polynomial discriminants and inequalities of type
cost(M, p, q) ≤ cost(M ′, p, q).

4 Algebraic degree formulae

Based on the combinatorial data of the previous section, here we construct a formal candi-
date of the minimal polynomial for the squared Wasserstein distance. The actual minimal
polynomial will always divide the formal candidate. We start by reviewing useful tools from
Galois theory.

Consider the ring A = Q[x1, . . . , xd , y1, . . . yd ]. We denote by · the following group
action of G = Sym(d) × Sym(d) on A:

(g1, g2) · xi = xg1(i),
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(g1, g2) · y j = yg2( j).

Let σ1, . . . , σd be the elementary symmetric polynomials in the variables x1, . . . xd , and
τ1, . . . , τd be the elementary symmetric polynomials in y1, . . . yd . We denote by AG the
ring of invariants under the group action G. Then the following holds.

Lemma 4.1 The ring of invariants AG is the polynomial ring Q[σ1, . . . , σd , τ1, . . . τd ]. In
particular, the generators σ1, . . . , σd , τ1, . . . τd are algebraically independent.

Proof Let us consider the subgroup H = Sym(d) × 1 of G, so H permutes the coordinates
xi . By the fundamental theorem of symmetric polynomials (over the ring Q[y1, . . . , yd ]),
we have AH = Q[σ1, . . . σd , y1, . . . yd ] with algebraically independent generators σi , y j .
Such H is normal in G, and G/H acts on AH by permuting the coordinates yi . Using the
fundamental theorem of symmetric polynomials over the ring Q[σ1, . . . , σd ], we obtain

AG = (AH )(G/H) = Q[σ1, . . . σd , y1, . . . yd ]Sym(d) = Q[σ1, . . . σd , τ1, . . . τd ]
with algebraically independent generators. ��
From this, we get that the inclusion Q(σ1, . . . σd , τ1, . . . τd) ⊂ Q(x1, . . . , xd , y1, . . . yd) is
a Galois field extension with Galois group G.

Lemma 4.2 Let f ∈ A and let { f1 = f , f2, . . . , fk} be the orbit of f under G. Consider the
following product in A[t]:

h:=
k∏

i=1

(t − fi ). (6)

Then, h actually lies in AG [t] and it is an irreducible polynomial inQ(σ1, . . . σd , τ1, . . . τd)[t]
of degree k in t.

Proof This is a classical exercise in Galois theory about Galois conjugates, see [5, p. 573].
We give a proof sketch for convenience. The action ofG permutes the factors of h, so h lies in
(A[t])G = AG [t]. Suppose h = h1h2 is a factorization of h inQ(x1, . . . , xd , y1, . . . yd), and
assume without loss of generality that (t − f1) divides h1 in Q(x1, . . . , xd , y1, . . . , yd)[t].
Applying the Galois action, we get that every linear factor (t − fi ) divides h1. Since the fi
are distinct, we get that h1 must have degree k in t , so the factorization is trivial. ��

4.1 Algebraic degrees

Given the polynomials p, q , the involutions φ,ψ ∈ Sym(d) and a vertex M of Bι
d , consider

the polynomial

fM := 1

d

∑

1≤i, j≤d

Mi j (xi − y j )(xφ(i) − yψ( j)) ⊂ Q[x1, . . . , xd , y1, . . . yd ], (7)

and the map

�p,q : Q[x1, . . . , xd , y1, . . . yd ] → C

xi 	→ αi ,

yi 	→ βi .

(8)

We observe the following.
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Lemma 4.3 Given a vertex M ∈ Bι
d , we have �p,q( fM ) = cost(M, p, q).

Proof This follows directly from ‖αi−β j‖2 = (αi−β j )(αi − β j ) = (αi−β j )(αφ(i)−βψ( j))

and comparing Eqs. (4) and (7). ��
We also have an action of G on [d] × {L, R} via:

(g1, g2) · (i, L) = (g1(i), L),

(g1, g2) · ( j, R) = (g2( j), R).

By abuse of notation, we identify the above action of G on [d] × {L, R} with the resulting
permutation group. For M ∈ Bι

d and � associated to M as in Sect. 3.1, we then view Autι(�)

as a subgroup of G. In fact we have the following.

Lemma 4.4 For g ∈ G, g( fM ) = fM ⇔ g ∈ Autι(�), where � is defined as in Sect. 3.1.

In other words, the stabilizer of fM under the action by G can be identified with Autι(�).

Proof We first decompose fM into three components: fM is a quadratic polynomial in the
variables x1, . . . xd , y1, . . . yd . We can decompose fM = fM,2,0 + fM,1,1 + fM,0,2 by the
multidegree in x1, . . . xd and y1, . . . yd . The action of G preserves multidegrees, so g ∈ G
fixes fM if it fixes all summands in the multidegree decomposition.

Let us first show that g( fM,2,0) = fM,2,0 for g = (g1, g2) if and only if g1 commutes
with φ. Indeed, we have fM,2,0 = 1

d

∑
1≤i, j≤d Mi j xi xφ(i) = 1

d

∑
1≤i≤d xi xφ(i) since M is

doubly stochastic. So the coefficient of x2i is 1
d if i is a fixed point of φ, and 0 otherwise. For

xi x j with i �= j the coefficient is 2
d if i and j are interchanged by φ, and 0 otherwise. So

g( fM,2,0) = fM,2,0 if and only if g1 sends fixed points of φ to fixed points of φ, and pairs
interchanged by φ to pairs interchanged by φ; namely, if and only if g1 commutes with φ.
We can see similarly that g( fM,0,2) = fM,0,2 if and only if g2 commutes with ψ .

Suppose now that g ∈ G commutes with ι. Let us show that g( fM,1,1) = fM,1,1 if and
only if g ∈ Autι(�). Since M ∈ Bι

d , we can write

fM,1,1 = − 1

d

∑

1≤i, j≤d

Mi j (xi yψ( j) + xφ(i)y j )

= − 1

d

⎛

⎝
∑

1≤i, j≤d

Mi j xi yψ( j) +
∑

1≤i, j≤d

Mi j xφ(i)y j

⎞

⎠ .

Now we can substitute j 	→ ψ( j) in the first sum and i 	→ φ(i) in the second sum to obtain

fM,1,1 = − 1

d

∑

1≤i, j≤d

(Miψ( j) + Mφ(i) j )xi y j = − 2

d

∑

1≤i, j≤d

Miψ( j)xi y j ,

where the last equality comes from M ∈ Bι
d . Hence, for g = (g1, g2) ∈ G, we have

g( fM,1,1) = − 2

d

∑

1≤i, j≤d

Miψ( j)xg1(i)yg2( j) = − 2

d

∑

1≤i, j≤d

Mg−1
1 (i)ψ(g−1

2 ( j))xi y j .

Therefore, g( fM,1,1) = fM,1,1 if and only if Miψ( j) = Mg−1
1 (i)ψ(g−1

2 ( j)) for all i, j . Since

g commutes with ι, then ψ commutes with g−1
2 . We can substitute j 	→ ψ( j) to see that

g( fM,1,1) = fM,1,1 is equivalent to g preserving �. ��
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We now consider the orbit of fM under G, we denote this set by OG( fM ). Let us denote

hM :=
∏

f̃ ∈OG ( fM )

( f̃ − t) ∈ A[t]. (9)

Applying Lemma 4.2, we get that hM is irreducible in Q(σ1, . . . σd , τ1, . . . τd)[t] and by the
Orbit-Stabilizer Theorem, it has degree (d!)2

|Autι(�)| . By abuse of notation, we also denote by
�p,q : Q[x1, . . . , xd , y1, . . . , yd , t] → C[t] the extension of the map defined in Eq. 8. We
obtain the following result.

Theorem 4.5 Let p, q ∈ Q[z] be monic polynomials of degree d, each with distinct roots.
Suppose M ∈ Bι

n is a minimizing vertex for cost(M, p, q) and � is the graph associated
to M.

Then, �p,q(hM ) ∈ Q[t] and W2
2(p, q) is a root of �p,q(hM ).

In particular, the algebraic degree ofW2
2(p, q) is bounded by (d!)2

|Autι(�)| .

Proof By Vieta’s formulae, �p,q maps σi and τ j (up to sign) to coefficients of p and q . So
�p,q(AG) ⊂ Q. Since, by Lemma 4.2 hM ∈ AG [t], the claim follows from the above
construction. ��

Let us show that this bound is sharp on a large set. Recall the open set of polynomial
pairs UM

(φ,ψ) defined in Definition 3.10, where polynomial roots are ordered satisfying the
involution φ,ψ and M is the unique minimizer for the cost function.

Theorem 4.6 For every vertex M ∈ Bι
d , there exists a dense set U ⊆ UM

(φ,ψ) of polynomial

pairs (p, q) such that�p,q(hM ) is irreducible. In particular, the algebraic degree ofW2
2(p, q)

is equal to (d!)2
|Autι(�)| for these polynomials, so the bound of Theorem 4.5 is sharp.

Proof The extended map �p,q : Q[σ1, . . . , σd , τ1, . . . , τd , t] → Q[t], is the specialization
map sending σi and τ j (up to sign) to the coefficients of p and q . We know that hM ∈ AG [t]
is irreducible by Lemma 4.2. By Hilbert’s irreducibility theorem (see e.g. [19, Theorem 46]
or [13, Chapter 9, Corollary 2.5]), the specialization �p,q(hM ) is irreducible for a dense set
of monic polynomials p, q ∈ Q[z]. In particular, on the open set UM

(φ,ψ) that admits M as

the unique minimizer, we have that �p,q(hM ) is the minimal polynomial of W2
2(p, q) for a

dense open subset U of UM
(φ,ψ). Hence, our bound in Theorem 4.5 is sharp on U . ��

Example 4.7 Suppose p, q ∈ Q[z] are generic monic polynomials of degree d , both with
only real roots. The only possible type (cf. Theorem 3.7) for the disjoint cycles of the graph
associated to vertices of Bι

d is type 1. Therefore, we get c1 = d , c2 = c3,k = c4,k,L =
c4,k,R = 0 and |Autι(�)| = c1! = d!. The algebraic degree of W 2

2 (p, q) is

WDdegree(p, q) = (d!)2
d! = d!,

for generic p, q , by Theorem 4.6.

For degree 1 polynomials, WDdegree = 1 trivially. When d = 2, if (pR, pC) = (qR, qC)

and p, q are generic, then WDdegree = 2. In the remaining cases, the Wasserstein distance
degree is 1. The values of theWasserstein distance degree for d = 3, 4 are displayed in Table
2. Degree 4 is the first interesting case where polynomials with the same number of real and
complex roots give rise to multiple open sets where we get different algebraic degrees for
W2

2(p, q).
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Table 2 Values of
WDdegree(p, q) for a dense set
of pairs (p, q)

Degree (pR, pC), (qR, qC) WDdegree(p, q)

3 (3,0), (3,0) 6

3 (3,0), (1,1) 9

3 (1,1), (1,1) 18

4 (4,0), (4,0) 24

4 (4,0), (2,1) 72

4 (4,0), (0,2) 18

4 (2,1), (2,1) 36, 144, 288

4 (2,1), (0,2) 18, 288

4 (0,2), (0,2) 72

Note that Theorem 4.5 gives the algebraic degree of the squared Wasserstein distance for
a dense set of pairs of polynomials. However, in special cases, it provides only an upper
bound, as exhibited in the next example.

Example 4.8 Consider p = z3−1with only one real root and q = z3−5z2+4z+3with three
real roots. Let ι be the associated involution and M the optimal vertex of Bι

3. Theorem 4.5
predicts an upper bound WDdegree(p, q) ≤ deg hM = 9. Indeed, the minimal polynomial
of the squared Wasserstein distance in this case is

27t3 − 540t2 + 3483t − 7231,

hence the Wasserstein distance degree is 3. This is due to the fact that p is special, in the
sense that one of its roots is a rational (in this case even integer) number.

Remark 4.9 If p, q ∈ Q[z] (with possibly multiple roots), and (p, q) ∈ UM
(φ,ψ), then we

still get that W2
2(p, q) is a root of φp,q(hM ), so we still obtain a bound for the Wasserstein

distance degree. However, this bound is far from being sharp in general.

4.2 Wasserstein distance degree via elimination

While theWasserstein distance degree is studied from combinatoric perspective, the algebraic
degree of two specific polynomials can also be understood via elimination of ideals. We
describe here how to compute the minimal polynomial of the Wasserstein distance of two
given polynomials via elimination. For the theory of elimination ideals, we refer to [14].

Let p, q ∈ Q[z] be polynomials of degree d with simple roots; we denote by pi , qi
the coefficient of the monomial zi in the univariate polynomial p, q respectively. Consider
the ideal in Q[x1, . . . , xd , y1, . . . , yd ] generated by Vieta’s formulae, i.e., all the relations
between the elementary symmetric polynomials in the roots of p, q and their coefficients:

I =
〈 ∑

1≤i≤d

xi + pd−1

pd
, . . . ,

∏

1≤i≤d

xi − (−1)d
p0
pd

,

∑

1≤i≤d

yi + qd−1

qd
, . . . ,

∏

1≤i≤d

yi − (−1)d
q0
qd

〉
.

The ideal I is zero dimensional. By construction, the variety associated to it consists of all
tuples of points in C2d such that the first d coordinates are the roots of p, and the last d
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coordinates are the roots of q . Counting all permutations of the two sets of coordinates, we
get that deg I = (d!)2. Notice that in the case where p, q are allowed to have double roots,
the degree of I decreases, because some permutations coincide, but (d!)2 remains a valid
upper bound.

Assume that the minimizer of the cost function cost(·, p, q) is attained at the vertex M
of Bι

d , and let hM be the invariant irreducible polynomial defined in (9). Consider a second
ideal

J = I + 〈t − fM (x, y)〉 ⊂ Q[x1, . . . , xd , y1, . . . , yd , t].
Using the isomorphism Q[x1, . . . , xd , y1, . . . , yd , t]/ 〈t − fM (x, y)〉 = Q[x1, . . . , xd , y1,
. . . , yd ], we see that Q[x1, . . . , xd , y1, . . . , yd , t]/J ∼= Q[x1, . . . , xd , y1, . . . , yd , t]/I , in
particular, J is also zero dimensional and has the same degree as I . Points in V (J ) are of the
form (α, β, fM (α, β)) for (α, β) in V (I ). The elimination ideal E = J ∩Q[t] has dimension
dim J = 0 and is explicitly generated by some polynomial. During the elimination process
or, more geometrically, during this projection, some of the (d!)2 points in the variety of J
get mapped to the same point. Points in V (E) are f̃ (α, β) for some fixed (α, β) ∈ V (I )
and every f̃ ∈ OG( fM ). So, for a dense set of pairs (p, q), E is generated by �p,q(hM )(t),
where �p,q is the natural extension of the specialization map in (8), and it is the minimal
polynomial of W 2

2 (p, q). In general, the generator of E contains as an irreducible factor the
minimal polynomial of W 2

2 (p, q).
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