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Classical and Generalized Trisecant Lemma

Classical Trisecant Lemma:
A general chord of a non-degenerate algebraic space curve is not a trisecant.

Generalized Trisecant Lemma' (curves in IP’% = non-degenerate variety X € ]P’é’_l):

If P1,..., Py are general points on X, W = Span{Py,...,P,} and we have
dimX +dimW < N —1, then XN W ={Py,...,P,}.

1.Luca Chiantini and Ciro Ciliberto. Weakly defective varieties. Trans. Amer. Math. Soc., 354(1):151-178, 2002.
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A Trichotomy from the Generalized Trisecant Lemma

Theorem
Let X C ]P’g ~1 be an irreducible, reduced, non-degenerate projective variety. Let Py, ..., P,
be general points on X and let W = Span{Pi,...,P,}. Then,
(a) (Generalized Trisecant Lemma)
IfdimX +dimW < N —1, then XN W ={Py,...,P,}.
(b) IfdimX +dimW = N — 1, then deg X > n.
When deg X > n, XN W ; {P1,...,Pn}.
When deg X = n, XN W = {P1,...,P,} and X is a variety with minimal degree; It can
be a quadric hypersurface, a cone over the Veronese surface, or a rational normal scroll.

(c) HfdimX +dimW >N —1, then XN W 2 {Py,...,P,}.

Question:
What is the analogue of the trichotomy over R 7
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From C to R

o X C Pg_l smooth irreducible non-degenerate projective variety of dimension d defined
by real coefficients polynomials with a real smooth point on it.

e Pi,..., P, € X general real points that span W.

Question: When does (X N W)g = {P1,...,Pn}?
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From C to R

o X C Pg_l smooth irreducible non-degenerate projective variety of dimension d defined
by real coefficients polynomials with a real smooth point on it.

e Pi,..., P, € X general real points that span W.
Question: When does (X N W)g = {P1,...,Pn}?

e When dim X +dimW > N — 1, X N W has positive dimension and it contains smooth
real point so (X N W)g has positive dimension, so (X N W)gr 2 {P1,..., Pn}.

e When dimX +dimW < N —1, XN W = () from the generalized Trisecant Lemma, so
(XN W)r ={P1,...,Py}.
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From C to R

e X C Pgil smooth irreducible non-degenerate projective variety of dimension d defined
by real coefficients polynomials with a real smooth point on it.

e Pi,...,P, € X general real points that span W.
Question: When does (X N W)g = {P1,...,Pn}?

e The difficult case is when when dim X +dim W =N — 1.
e X N W contains finitely many points.

e Need to understand the set

N (X) :=the set of possible numbers of real points in X N W,
W real linear space,dim W +dim X = N — 1, W N X transversely
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From C to R

e X C ]P’g_1 smooth irreducible non-degenerate projective variety of dimension d defined
by real coefficients polynomials with a real smooth point on it.

e Pi,..., P, € X general real points that span W.

Question: When does (X N W)r = {P1,...,Pn}?

N (X) :=the set of possible numbers of real points in X N W,
W real linear space, dim W 4+ dim X = N — 1, W N X transversely

e When dimX +dimW = N — 1 and deg X # n mod 2, (XN W)r 2 {P1,..., P}
e When dim X +dimW =N —1 and deg X = n mod 2,
(i) Fng N(X), XN W)g 2{Py1,...,Pn};
(it) If n € N(X) and there is n € N'(X) with n’ > n, there is a nonempty proper open set of
real linear spaces such that (XN W)g = {P1,..., Pn};
(i) WN(X)max =n, (XN W)g ={Py,...,Pp}.
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Visualize N'(X)
The Edge quartic C defined by

25(x* + y* + %) — 34(x%y? + X222 + y?2%) = 0.

N(C) = {0,2,4}.

S 0
BN
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Characterizing the Possible Numbers of Real Solutions

Recall that

N (X) :=the set of possible numbers of real points in X N W,
W real linear space,dim W 4+ dim X = N — 1, W N X transversely

We proved the following characterization of N'(X).

Theorem (Kristian Ranestad, Anna Seigal, and KW 2024)

Let X C ]P)g ~1 be a smooth real projective variety of dimension d with a smooth real point.
Then N (X) satisfies

(i) M(X) = {k : N(X)min < k < N(X)max, k = deg X mod 2};

(i) N—dimX < N (X)max < deg X.
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Regions of fixed number of real solutions in the Grassmannian

We define Uy C Gr(N — d — 1, N — 1)g to be the set of (N — d — 1)-dimensional linear
spaces in }P’g_l that intersect X transversely in exactly k real intersection points.

e The set Uy is open in Gr(N —d — 1, N — 1)g.

2.Sturmfels, Bernd. " The Hurwitz form of a projective variety.” Journal of Symbolic Computation 79 (2017): 186-196.
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Regions of fixed number of real solutions in the Grassmannian

We define Uy C Gr(N — d — 1, N — 1)g to be the set of (N — d — 1)-dimensional linear
spaces in }P’g_l that intersect X transversely in exactly k real intersection points.

e The set Uy is open in Gr(N —d — 1, N — 1)g.
o Theset B:=Gr(N —d—1,N—1)r — Ukerx) Uk is an irreducible hypersurface

defined by the Hurwitz form?. It contains linear spaces in Pﬂlgfl that intersect X at some
point with multiplicity at least two or in some positive dimension variety.

o If U;,U; are smoothly adjacent, meaning that U/; N, contains some smooth point of the
boundary B := Gr(N —d — 1, N — 1)r — Ukerx) Uk, then i =j+2ori=j—2.

2.Sturmfels, Bernd. " The Hurwitz form of a projective variety.” Journal of Symbolic Computation 79 (2017): 186-196.
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N (X)min and N(X)max for Segre-Veronese varieties

e Segre-Veronese varieties parametrize partially symmetric rank one tensors
¥ ®..® a%d" € (RM+1)®dh @ ... @ (R™F1)®% yp to scale. They are
P&t x -+ x PU% embedded via O(dh, . . ., dk).

o If k =1, rank-1 symmetric tensors = Veronese varieties.

e If di,...,dx =1, usual rank-1 tensors = Segre varieties.
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N (X)min and N(X)max for Segre-Veronese varieties

e Segre-Veronese varieties parametrize partially symmetric rank one tensors
¥ ®..® a%d" € (RM+1)®dh @ ... @ (R™F1)®% yp to scale. They are
P&t x -+ x PU% embedded via O(di, . . ., dk).

o If k =1, rank-1 symmetric tensors = Veronese varieties.

e If di,...,dx =1, usual rank-1 tensors = Segre varieties.

Theorem (Kristian Ranestad, Anna Seigal, and KW 2024)

For X the Segre-Veronese variety ofIP(’é’l N, ng embedded via O(d, .. ., d),
(i) M(X)max = deg X = W Hle dimi"

(i) When at least two of my, ..., m, are odd, then N (X)min = 0;
(iii) When at least one of dy, ..., d, is even, then N'(X)min = 0.
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N (X)min and N(X)max for Segre-Veronese varieties (continued)

More things can be said for small Segre varieties.

Theorem (Kristian Ranestad, Anna Seigal, and KW 2024)

For Segre varieties P{ x P¢, we have

(i) N(PE X PL)min = 0 if n is odd and N'(X)min = 1 if n is even.
(i) N(PZ X PL)min < N (P2 x P2 ) min + N (PE X PE ) min
(i) N(PE x P2)min < ["32].

Open Question: Let X be the Segre-Veronese variety of P{" x -+ x P embedded via
O(di, ..., dk). What is N(X)min When di, ..., d, are all odd and there is at most one odd
integer among my, ..., m,?
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Application: Independent Component Analysis

e |CA writes observed variables as linear mixtures of independent sources, i.e.
x = As,

where s = (s1,...,s)T is independent sources, x = (x1,...,x;)" is the observed
variables, and A € R’ is an unknown mixing matrix.
e The ICA model is identifiable if the mixing matrix A can be uniquely recovered, up to
some equivalence. A matrix A € R'*/ is identifiable if for any vector of source variables
s = (s1,...,5y) with at most one Gaussian source, one can recover A uniquely up to
some equivalence.
Identifiability has an algebraic geometric criterion.

Theorem (KW and Anna Seigal, 2024)

Fix A € R"*J with columns a1, ...,a  and no pair of columns collinear. Then A is
identifiable if and only if the linear span of a?z, ey a?z does not contain any real matrix
b®2 unless b is collinear to a; for some j € {1,...,J}.
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Application: Independent Component Analysis (continued)

Theorem (KW and Anna Seigal, 2024)

Fix A € R with columns a1, ...,a  and no pair of columns collinear. Then A is
identifiable if and only if the linear span of ai@z, ey 3392 does not contain any real matrix
b®2 unless b is collinear to a; for some j € {1,...,J}.

When does a linear space spanned by J real points in the second Veronese embedding of
P(’C_l, intersect the second Veronese in exactly these J real points?
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Application: Independent Component Analysis (continued)

Theorem (KW and Anna Seigal, 2024)

Fix A € R with columns a1, ...,a  and no pair of columns collinear. Then A is
identifiable if and only if the linear span of a?z, ey a?z does not contain any real matrix
b®2 unless b is collinear to a; for some j € {1,...,J}.

When does a linear space spanned by J real points in the second Veronese embedding of
P(’C_l, intersect the second Veronese in exactly these J real points?

Theorem (KW and Anna Seigal, 2024)
Let A € R'*J be generic. Then
(i) 1f < (L) orif (I,J) = (2,2) or (3,4), then A is identifiable;
(i) IfJ = (é) +1, where | > 4 and | = 2,3 mod 4, then there is a positive probability that
A is identifiable and a positive probability that A is non-identifiable;
(i) IfJ> (3) +1orifJ=(})+1and | =0,1 mod 4, then A is non-identifiable.
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Thank you!

See arXiv:2409.01356 for more details.

Registration and travel support for this presentation was provided by the Society for
Industrial and Applied Mathematics.
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