A Real Generalized Trisecant Trichotomy

Kexin(Ada) Wang Harvard University

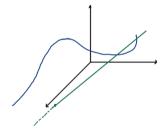
joint work with Kristian Ranestad and Anna Seigal

SIAM AG 2025

Classical and Generalized Trisecant Lemma

Classical Trisecant Lemma:

A general chord of a non-degenerate algebraic space curve is not a trisecant.



Generalized Trisecant Lemma¹ (curves in $\mathbb{P}^3_{\mathbb{C}} \Rightarrow$ non-degenerate variety $X \in \mathbb{P}^{N-1}_{\mathbb{C}}$):

If P_1, \ldots, P_n are general points on X, $W = \text{Span}\{P_1, \ldots, P_n\}$ and we have $\dim X + \dim W < N - 1$, then $X \cap W = \{P_1, \ldots, P_n\}$.

A Trichotomy from the Generalized Trisecant Lemma

Theorem

Let $X \subseteq \mathbb{P}^{N-1}_{\mathbb{C}}$ be an irreducible, reduced, non-degenerate projective variety. Let P_1, \ldots, P_n be general points on X and let $W = \text{Span}\{P_1, \ldots, P_n\}$. Then,

- (a) (Generalized Trisecant Lemma)
 If dim X + dim W < N-1, then $X \cap W = \{P_1, \dots, P_n\}$.
- (b) If dim X + dim W = N 1, then deg $X \ge n$. When deg X > n, $X \cap W \supseteq \{P_1, \dots, P_n\}$. When deg X = n, $X \cap W = \{P_1, \dots, P_n\}$ and X is a variety with minimal degree; It can be a quadric hypersurface, a cone over the Veronese surface, or a rational normal scroll.
- (c) If dim X + dim W > N 1, then $X \cap W \supseteq \{P_1, \dots, P_n\}$.

Question:

What is the analogue of the trichotomy over \mathbb{R} ?

From \mathbb{C} to \mathbb{R}

- $X \subseteq \mathbb{P}^{N-1}_{\mathbb{C}}$ smooth irreducible non-degenerate projective variety of dimension d defined by real coefficients polynomials with a real smooth point on it.
- $P_1, \ldots, P_n \in X$ general real points that span W.

Question: When does $(X \cap W)_{\mathbb{R}} = \{P_1, \dots, P_n\}$?

From $\mathbb C$ to $\mathbb R$

- $X \subseteq \mathbb{P}^{N-1}_{\mathbb{C}}$ smooth irreducible non-degenerate projective variety of dimension d defined by real coefficients polynomials with a real smooth point on it.
- $P_1, \ldots, P_n \in X$ general real points that span W.

Question: When does $(X \cap W)_{\mathbb{R}} = \{P_1, \dots, P_n\}$?

- When dim X + dim W > N-1, $X \cap W$ has positive dimension and it contains smooth real point so $(X \cap W)_{\mathbb{R}}$ has positive dimension, so $(X \cap W)_{\mathbb{R}} \supsetneq \{P_1, \dots, P_n\}$.
- When dim X + dim W < N 1, $X \cap W = \emptyset$ from the generalized Trisecant Lemma, so $(X \cap W)_{\mathbb{R}} = \{P_1, \dots, P_n\}$.

From \mathbb{C} to \mathbb{R}

- $X \subseteq \mathbb{P}^{N-1}_{\mathbb{C}}$ smooth irreducible non-degenerate projective variety of dimension d defined by real coefficients polynomials with a real smooth point on it.
- $P_1, \ldots, P_n \in X$ general real points that span W.

Question: When does $(X \cap W)_{\mathbb{R}} = \{P_1, \dots, P_n\}$?

- The difficult case is when when $\dim X + \dim W = N 1$.
- $X \cap W$ contains finitely many points.
- Need to understand the set

$$\mathcal{N}(X)$$
 :=the set of possible numbers of real points in $X \cap W$, W real linear space, dim $W + \dim X = N - 1$, $W \cap X$ transversely

From \mathbb{C} to \mathbb{R}

- $X \subseteq \mathbb{P}^{N-1}_{\mathbb{C}}$ smooth irreducible non-degenerate projective variety of dimension d defined by real coefficients polynomials with a real smooth point on it.
- $P_1, \ldots, P_n \in X$ general real points that span W.

Question: When does $(X \cap W)_{\mathbb{R}} = \{P_1, \dots, P_n\}$?

 $\mathcal{N}(X)$:=the set of possible numbers of real points in $X \cap W$, W real linear space, dim $W + \dim X = N - 1$, $W \cap X$ transversely

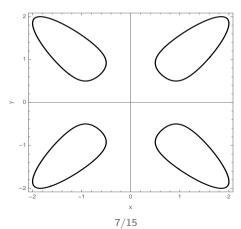
- When dim X + dim W = N 1 and deg $X \not\equiv n \mod 2$, $(X \cap W)_{\mathbb{R}} \supseteq \{P_1, \dots, P_n\}$.
- When dim X + dim W = N 1 and deg $X \equiv n \mod 2$,
 - (i) If $n \notin \mathcal{N}(X)$, $(X \cap W)_{\mathbb{R}} \supseteq \{P_1, \dots, P_n\}$;
 - (ii) If $n \in \mathcal{N}(X)$ and there is $n' \in \mathcal{N}(X)$ with n' > n, there is a nonempty proper open set of real linear spaces such that $(X \cap W)_{\mathbb{R}} = \{P_1, \dots, P_n\}$;
 - (iii) If $\mathcal{N}(X)_{\text{max}} = n$, $(X \cap W)_{\mathbb{R}} = \{P_1, \dots, P_n\}$.

Visualize $\mathcal{N}(X)$

The Edge quartic C defined by

$$25(x^4 + y^4 + z^4) - 34(x^2y^2 + x^2z^2 + y^2z^2) = 0.$$
 (1)

 $\mathcal{N}(C) = \{0, 2, 4\}.$

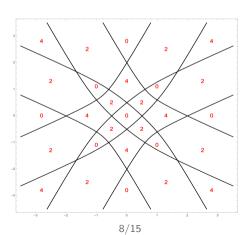


Visualize $\mathcal{N}(X)$

The Edge quartic C defined by

$$25(x^4 + y^4 + z^4) - 34(x^2y^2 + x^2z^2 + y^2z^2) = 0.$$
 (2)

$$\mathcal{N}(C) = \{0, 2, 4\}.$$



Characterizing the Possible Numbers of Real Solutions

Recall that

 $\mathcal{N}(X)$:=the set of possible numbers of real points in $X \cap W$, W real linear space, dim $W + \dim X = N - 1$, $W \cap X$ transversely

We proved the following characterization of $\mathcal{N}(X)$.

Theorem (Kristian Ranestad, Anna Seigal, and KW 2024)

Let $X \subseteq \mathbb{P}^{N-1}_{\mathbb{C}}$ be a smooth real projective variety of dimension d with a smooth real point. Then $\mathcal{N}(X)$ satisfies

- (i) $\mathcal{N}(X) = \{k : \mathcal{N}(X)_{\min} \le k \le \mathcal{N}(X)_{\max}, k \equiv \deg X \mod 2\};$
- (ii) $N \dim X \leq \mathcal{N}(X)_{\max} \leq \deg X$.

Regions of fixed number of real solutions in the Grassmannian

We define $\mathcal{U}_k \subseteq \operatorname{Gr}(N-d-1,N-1)_{\mathbb{R}}$ to be the set of (N-d-1)-dimensional linear spaces in $\mathbb{P}^{N-1}_{\mathbb{R}}$ that intersect X transversely in exactly k real intersection points.

• The set \mathcal{U}_k is open in $Gr(N-d-1,N-1)_{\mathbb{R}}$.

^{2.}Sturmfels, Bernd. "The Hurwitz form of a projective variety." Journal of Symbolic Computation 79 (2017): 186-196. 10/15

Regions of fixed number of real solutions in the Grassmannian

We define $\mathcal{U}_k \subseteq \operatorname{Gr}(N-d-1,N-1)_{\mathbb{R}}$ to be the set of (N-d-1)-dimensional linear spaces in $\mathbb{P}^{N-1}_{\mathbb{R}}$ that intersect X transversely in exactly k real intersection points.

- The set \mathcal{U}_k is open in $Gr(N-d-1,N-1)_{\mathbb{R}}$.
- The set $B:=\operatorname{Gr}(N-d-1,N-1)_{\mathbb{R}}-\bigcup_{k\in\mathcal{N}(X)}\mathcal{U}_k$ is an irreducible hypersurface defined by the Hurwitz form². It contains linear spaces in $\mathbb{P}^{N-1}_{\mathbb{R}}$ that intersect X at some point with multiplicity at least two or in some positive dimension variety.

^{2.}Sturmfels, Bernd. "The Hurwitz form of a projective variety." Journal of Symbolic Computation 79 (2017): 186-196. 10/15

Regions of fixed number of real solutions in the Grassmannian

We define $\mathcal{U}_k \subseteq \operatorname{Gr}(N-d-1,N-1)_{\mathbb{R}}$ to be the set of (N-d-1)-dimensional linear spaces in $\mathbb{P}^{N-1}_{\mathbb{R}}$ that intersect X transversely in exactly k real intersection points.

- The set \mathcal{U}_k is open in $Gr(N-d-1,N-1)_{\mathbb{R}}$.
- The set $B:=\operatorname{Gr}(N-d-1,N-1)_{\mathbb R}-\bigcup_{k\in\mathcal N(X)}\mathcal U_k$ is an irreducible hypersurface defined by the Hurwitz form². It contains linear spaces in $\mathbb P^{N-1}_{\mathbb R}$ that intersect X at some point with multiplicity at least two or in some positive dimension variety.
- If U_i, U_j are smoothly adjacent, meaning that $\overline{U_i} \cap \overline{U_j}$ contains some smooth point of the boundary $B := \text{Gr}(N-d-1,N-1)_{\mathbb{R}} \bigcup_{k \in \mathcal{N}(X)} \mathcal{U}_k$, then i = j+2 or i = j-2.

$\mathcal{N}(X)_{\min}$ and $\mathcal{N}(X)_{\max}$ for Segre-Veronese varieties

- Segre-Veronese varieties parametrize partially symmetric rank one tensors $\mathbf{a}_1^{\otimes d_1} \otimes \ldots \otimes \mathbf{a}_k^{\otimes d_k} \in (\mathbb{R}^{m_1+1})^{\otimes d_1} \otimes \cdots \otimes (\mathbb{R}^{m_k+1})^{\otimes d_k}$ up to scale. They are $\mathbb{P}_{\mathbb{C}}^{m_1} \times \cdots \times \mathbb{P}_{\mathbb{C}}^{m_k}$ embedded via $O(d_1,\ldots,d_k)$.
- If k = 1, rank-1 symmetric tensors = Veronese varieties.
- If $d_1, \ldots, d_k = 1$, usual rank-1 tensors = Segre varieties.

$\mathcal{N}(X)_{\min}$ and $\mathcal{N}(X)_{\max}$ for Segre-Veronese varieties

- Segre-Veronese varieties parametrize partially symmetric rank one tensors $\mathbf{a}_1^{\otimes d_1} \otimes \ldots \otimes \mathbf{a}_k^{\otimes d_k} \in (\mathbb{R}^{m_1+1})^{\otimes d_1} \otimes \cdots \otimes (\mathbb{R}^{m_k+1})^{\otimes d_k}$ up to scale. They are $\mathbb{P}_{\mathbb{C}}^{m_1} \times \cdots \times \mathbb{P}_{\mathbb{C}}^{m_k}$ embedded via $O(d_1,\ldots,d_k)$.
- If k = 1, rank-1 symmetric tensors = Veronese varieties.
- If $d_1, \ldots, d_k = 1$, usual rank-1 tensors = Segre varieties.

Theorem (Kristian Ranestad, Anna Seigal, and KW 2024)

For X the Segre-Veronese variety of $\mathbb{P}^{m_1}_{\mathbb{C}} \times \cdots \times \mathbb{P}^{m_k}_{\mathbb{C}}$ embedded via $O(d_1, \ldots, d_k)$,

- (i) $\mathcal{N}(X)_{\max} = \deg X = \frac{(m_1 + ... + m_n)!}{m_1! \cdots m_n!} \prod_{i=1}^n d_i^{m_i};$
- (ii) When at least two of m_1, \ldots, m_n are odd, then $\mathcal{N}(X)_{\min} = 0$;
- (iii) When at least one of d_1, \ldots, d_n is even, then $\mathcal{N}(X)_{\min} = 0$.

$\mathcal{N}(X)_{\min}$ and $\mathcal{N}(X)_{\max}$ for Segre-Veronese varieties (continued)

More things can be said for small Segre varieties.

Theorem (Kristian Ranestad, Anna Seigal, and KW 2024)

For Segre varieties $\mathbb{P}^m_{\mathbb{C}} \times \mathbb{P}^n_{\mathbb{C}}$, we have

- (i) $\mathcal{N}(\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^n_{\mathbb{C}})_{\min} = 0$ if n is odd and $\mathcal{N}(X)_{\min} = 1$ if n is even.
- $\text{(ii)} \ \ \mathcal{N}(\mathbb{P}^2_{\mathbb{C}}\times\mathbb{P}^n_{\mathbb{C}})_{\mathsf{min}} \leq \mathcal{N}(\mathbb{P}^2_{\mathbb{C}}\times\mathbb{P}^{n-1}_{\mathbb{C}})_{\mathsf{min}} + \mathcal{N}(\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^{n-1}_{\mathbb{C}})_{\mathsf{min}}$
- (iii) $\mathcal{N}(\mathbb{P}^2_{\mathbb{C}} \times \mathbb{P}^n_{\mathbb{C}})_{\min} \leq \lfloor \frac{n-2}{2} \rfloor$.

Open Question: Let X be the Segre-Veronese variety of $\mathbb{P}^{m_1}_{\mathbb{C}} \times \cdots \times \mathbb{P}^{m_k}_{\mathbb{C}}$ embedded via $O(d_1, \ldots, d_k)$. What is $\mathcal{N}(X)_{\min}$ when d_1, \ldots, d_n are all odd and there is at most one odd integer among m_1, \ldots, m_n ?

Application: Independent Component Analysis

• ICA writes observed variables as linear mixtures of independent sources, i.e.

$$\mathbf{x} = A\mathbf{s},$$

where $\mathbf{s} = (s_1, \dots, s_J)^\mathsf{T}$ is independent sources, $\mathbf{x} = (x_1, \dots, x_I)^\mathsf{T}$ is the observed variables, and $A \in \mathbb{R}^{I \times J}$ is an unknown mixing matrix.

• The ICA model is identifiable if the mixing matrix A can be uniquely recovered, up to some equivalence. A matrix $A \in \mathbb{R}^{I \times J}$ is identifiable if for any vector of source variables $\mathbf{s} = (s_1, \dots, s_J)$ with at most one Gaussian source, one can recover A uniquely up to some equivalence.

Identifiability has an algebraic geometric criterion.

Theorem (KW and Anna Seigal, 2024)

Fix $A \in \mathbb{R}^{I \times J}$ with columns $\mathbf{a}_1, \dots, \mathbf{a}_J$ and no pair of columns collinear. Then A is identifiable if and only if the linear span of $\mathbf{a}_1^{\otimes 2}, \dots, \mathbf{a}_J^{\otimes 2}$ does not contain any real matrix $\mathbf{b}^{\otimes 2}$ unless \mathbf{b} is collinear to \mathbf{a}_i for some $j \in \{1, \dots, J\}$.

Application: Independent Component Analysis (continued)

Theorem (KW and Anna Seigal, 2024)

Fix $A \in \mathbb{R}^{I \times J}$ with columns $\mathbf{a}_1, \dots, \mathbf{a}_J$ and no pair of columns collinear. Then A is identifiable if and only if the linear span of $\mathbf{a}_1^{\otimes 2}, \dots, \mathbf{a}_J^{\otimes 2}$ does not contain any real matrix $\mathbf{b}^{\otimes 2}$ unless \mathbf{b} is collinear to \mathbf{a}_j for some $j \in \{1, \dots, J\}$.

When does a linear space spanned by J real points in the second Veronese embedding of $\mathbb{P}^{I-1}_{\mathbb{C}}$, intersect the second Veronese in exactly these J real points?

Application: Independent Component Analysis (continued)

Theorem (KW and Anna Seigal, 2024)

Fix $A \in \mathbb{R}^{I \times J}$ with columns $\mathbf{a}_1, \dots, \mathbf{a}_J$ and no pair of columns collinear. Then A is identifiable if and only if the linear span of $\mathbf{a}_1^{\otimes 2}, \dots, \mathbf{a}_J^{\otimes 2}$ does not contain any real matrix $\mathbf{b}^{\otimes 2}$ unless \mathbf{b} is collinear to \mathbf{a}_j for some $j \in \{1, \dots, J\}$.

When does a linear space spanned by J real points in the second Veronese embedding of $\mathbb{P}^{J-1}_{\mathbb{C}}$, intersect the second Veronese in exactly these J real points?

Theorem (KW and Anna Seigal, 2024)

Let $A \in \mathbb{R}^{I \times J}$ be generic. Then

- (i) If $J \leq \binom{I}{2}$ or if (I, J) = (2, 2) or (3, 4), then A is identifiable;
- (ii) If $J = \binom{I}{2} + 1$, where $I \ge 4$ and $I \equiv 2,3 \mod 4$, then there is a positive probability that A is identifiable and a positive probability that A is non-identifiable;
- (iii) If $J > \binom{I}{2} + 1$ or if $J = \binom{I}{2} + 1$ and $I \equiv 0, 1 \mod 4$, then A is non-identifiable.

Thank you!

See arXiv:2409.01356 for more details.

Registration and travel support for this presentation was provided by the Society for Industrial and Applied Mathematics.