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Classical and Generalized Trisecant Lemma

Classical Trisecant Lemma:
A general chord of a non-degenerate algebraic space curve is not a trisecant.

Generalized Trisecant Lemma1 (curves in P3
C ⇒ non-degenerate variety X ∈ PN−1

C ):

If P1, . . . ,Pn are general points on X , W = Span{P1, . . . ,Pn} and we have
dimX + dimW < N − 1, then X ∩W = {P1, . . . ,Pn}.
1.Luca Chiantini and Ciro Ciliberto. Weakly defective varieties. Trans. Amer. Math. Soc., 354(1):151–178, 2002.
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A Trichotomy from the Generalized Trisecant Lemma

Theorem

Let X ⊆ PN−1
C be an irreducible, reduced, non-degenerate projective variety. Let P1, . . . ,Pn

be general points on X and let W = Span{P1, . . . ,Pn}. Then,
(a) (Generalized Trisecant Lemma)

If dimX + dimW < N − 1, then X ∩W = {P1, . . . ,Pn}.
(b) If dimX + dimW = N − 1, then degX ≥ n.

When degX > n, X ∩W ⫌ {P1, . . . ,Pn}.
When degX = n, X ∩W = {P1, . . . ,Pn} and X is a variety with minimal degree; It can
be a quadric hypersurface, a cone over the Veronese surface, or a rational normal scroll.

(c) If dimX + dimW > N − 1, then X ∩W ⫌ {P1, . . . ,Pn}.

Question:
What is the analogue of the trichotomy over R ?
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From C to R

• X ⊆ PN−1
C smooth irreducible non-degenerate projective variety of dimension d defined

by real coefficients polynomials with a real smooth point on it.

• P1, . . . ,Pn ∈ X general real points that span W .

Question: When does (X ∩W )R = {P1, . . . ,Pn}?

• When dimX + dimW > N − 1, X ∩W has positive dimension and it contains smooth
real point so (X ∩W )R has positive dimension, so (X ∩W )R ⫌ {P1, . . . ,Pn}.

• When dimX + dimW < N − 1, X ∩W = ∅ from the generalized Trisecant Lemma, so
(X ∩W )R = {P1, . . . ,Pn}.
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From C to R

• X ⊆ PN−1
C smooth irreducible non-degenerate projective variety of dimension d defined

by real coefficients polynomials with a real smooth point on it.

• P1, . . . ,Pn ∈ X general real points that span W .

Question: When does (X ∩W )R = {P1, . . . ,Pn}?

• The difficult case is when when dimX + dimW = N − 1.

• X ∩W contains finitely many points.

• Need to understand the set

N (X ) :=the set of possible numbers of real points in X ∩W ,

W real linear space, dimW + dimX = N − 1,W ∩ X transversely
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From C to R
• X ⊆ PN−1

C smooth irreducible non-degenerate projective variety of dimension d defined
by real coefficients polynomials with a real smooth point on it.

• P1, . . . ,Pn ∈ X general real points that span W .

Question: When does (X ∩W )R = {P1, . . . ,Pn}?

N (X ) :=the set of possible numbers of real points in X ∩W ,

W real linear space, dimW + dimX = N − 1,W ∩ X transversely

• When dimX + dimW = N − 1 and degX ̸≡ n mod 2, (X ∩W )R ⫌ {P1, . . . ,Pn}.
• When dimX + dimW = N − 1 and degX ≡ n mod 2,

(i) If n /∈ N (X ), (X ∩W )R ⫌ {P1, . . . ,Pn} ;
(ii) If n ∈ N (X ) and there is n′ ∈ N (X ) with n′ > n, there is a nonempty proper open set of

real linear spaces such that (X ∩W )R = {P1, . . . ,Pn};
(iii) If N (X )max = n, (X ∩W )R = {P1, . . . ,Pn}.
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Visualize N (X )

The Edge quartic C defined by

25(x4 + y4 + z4)− 34(x2y2 + x2z2 + y2z2) = 0. (1)

N (C ) = {0, 2, 4}.
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Visualize N (X )

The Edge quartic C defined by

25(x4 + y4 + z4)− 34(x2y2 + x2z2 + y2z2) = 0. (2)

N (C ) = {0, 2, 4}.
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Characterizing the Possible Numbers of Real Solutions

Recall that

N (X ) :=the set of possible numbers of real points in X ∩W ,

W real linear space, dimW + dimX = N − 1,W ∩ X transversely

We proved the following characterization of N (X ).

Theorem (Kristian Ranestad, Anna Seigal, and KW 2024)

Let X ⊆ PN−1
C be a smooth real projective variety of dimension d with a smooth real point.

Then N (X ) satisfies

(i) N (X ) = {k : N (X )min ≤ k ≤ N (X )max, k ≡ degX mod 2};
(ii) N − dimX ≤ N (X )max ≤ degX.

9/15



Regions of fixed number of real solutions in the Grassmannian

We define Uk ⊆ Gr(N − d − 1,N − 1)R to be the set of (N − d − 1)-dimensional linear
spaces in PN−1

R that intersect X transversely in exactly k real intersection points.

• The set Uk is open in Gr(N − d − 1,N − 1)R.

• The set B := Gr(N − d − 1,N − 1)R −
⋃

k∈N (X ) Uk is an irreducible hypersurface

defined by the Hurwitz form2. It contains linear spaces in PN−1
R that intersect X at some

point with multiplicity at least two or in some positive dimension variety.

• If Ui ,Uj are smoothly adjacent, meaning that Ui ∩ Uj contains some smooth point of the
boundary B := Gr(N − d − 1,N − 1)R −

⋃
k∈N (X ) Uk , then i = j + 2 or i = j − 2.

2.Sturmfels, Bernd. ”The Hurwitz form of a projective variety.” Journal of Symbolic Computation 79 (2017): 186-196.
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N (X )min and N (X )max for Segre-Veronese varieties

• Segre-Veronese varieties parametrize partially symmetric rank one tensors
a⊗d1
1 ⊗ . . .⊗ a⊗dk

k ∈ (Rm1+1)⊗d1 ⊗ · · · ⊗ (Rmk+1)⊗dk up to scale. They are
Pm1
C × · · · × Pmk

C embedded via O(d1, . . . , dk).

• If k = 1, rank-1 symmetric tensors = Veronese varieties.

• If d1, . . . , dk = 1, usual rank-1 tensors = Segre varieties.

Theorem (Kristian Ranestad, Anna Seigal, and KW 2024)

For X the Segre-Veronese variety of Pm1
C × · · · × Pmk

C embedded via O(d1, . . . , dk),

(i) N (X )max = degX = (m1+...+mn)!
m1!···mn!

∏n
i=1 d

mi
i ;

(ii) When at least two of m1, . . . ,mn are odd, then N (X )min = 0;

(iii) When at least one of d1, . . . , dn is even, then N (X )min = 0.
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N (X )min and N (X )max for Segre-Veronese varieties (continued)

More things can be said for small Segre varieties.

Theorem (Kristian Ranestad, Anna Seigal, and KW 2024)

For Segre varieties Pm
C × Pn

C, we have

(i) N (P1
C × Pn

C)min = 0 if n is odd and N (X )min = 1 if n is even.

(ii) N (P2
C × Pn

C)min ≤ N (P2
C × Pn−1

C )min +N (P1
C × Pn−1

C )min

(iii) N (P2
C × Pn

C)min ≤ ⌊n−2
2 ⌋.

Open Question: Let X be the Segre-Veronese variety of Pm1
C × · · · × Pmk

C embedded via
O(d1, . . . , dk). What is N (X )min when d1, . . . , dn are all odd and there is at most one odd
integer among m1, . . . ,mn?
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Application: Independent Component Analysis

• ICA writes observed variables as linear mixtures of independent sources, i.e.

x = As,

where s = (s1, . . . , sJ)
T is independent sources, x = (x1, . . . , xI )

T is the observed
variables, and A ∈ RI×J is an unknown mixing matrix.

• The ICA model is identifiable if the mixing matrix A can be uniquely recovered, up to
some equivalence. A matrix A ∈ RI×J is identifiable if for any vector of source variables
s = (s1, . . . , sJ) with at most one Gaussian source, one can recover A uniquely up to
some equivalence.

Identifiability has an algebraic geometric criterion.

Theorem (KW and Anna Seigal, 2024)

Fix A ∈ RI×J with columns a1, . . . , aJ and no pair of columns collinear. Then A is
identifiable if and only if the linear span of a⊗2

1 , . . . , a⊗2
J does not contain any real matrix

b⊗2 unless b is collinear to aj for some j ∈ {1, . . . , J}.
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Application: Independent Component Analysis (continued)

Theorem (KW and Anna Seigal, 2024)

Fix A ∈ RI×J with columns a1, . . . , aJ and no pair of columns collinear. Then A is
identifiable if and only if the linear span of a⊗2

1 , . . . , a⊗2
J does not contain any real matrix

b⊗2 unless b is collinear to aj for some j ∈ {1, . . . , J}.

When does a linear space spanned by J real points in the second Veronese embedding of
PI−1
C , intersect the second Veronese in exactly these J real points?

Theorem (KW and Anna Seigal, 2024)

Let A ∈ RI×J be generic. Then

(i) If J ≤
(I
2

)
or if (I , J) = (2, 2) or (3, 4), then A is identifiable;

(ii) If J =
(I
2

)
+ 1, where I ≥ 4 and I ≡ 2, 3 mod 4, then there is a positive probability that

A is identifiable and a positive probability that A is non-identifiable;

(iii) If J >
(I
2

)
+ 1 or if J =

(I
2

)
+ 1 and I ≡ 0, 1 mod 4, then A is non-identifiable.
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Thank you!
See arXiv:2409.01356 for more details.

Registration and travel support for this presentation was provided by the Society for
Industrial and Applied Mathematics.
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